An updated Lagrangian discontinuous Galerkin hydrodynamic method for gas dynamics

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discontinuous Galerkin Semi-lagrangian Method for Vlasov-poisson

Abstract. We present a discontinuous Galerkin scheme for the numerical approximation of the onedimensional periodic Vlasov-Poisson equation. The scheme is based on a Galerkin-characteristics method in which the distribution function is projected onto a space of discontinuous functions. We present comparisons with a semi-Lagrangian method to emphasize the good behavior of this scheme when applie...

متن کامل

Space-time discontinuous Galerkin finite element method for inviscid gas dynamics

In this paper an overview is given of the space-time discontinuous Galerkin finite element method for the solution of the Euler equations of gas dynamics. This technique is well suited for problems which require moving meshes to deal with changes in the domain boundary. The method is demonstrated with the simulation of the elastic deformation of a wing in subsonic and transonic flow.

متن کامل

A Semi-lagrangian Discontinuous Galerkin Superconvergence

We show a superconvergence property for the Semi-Lagrangian Discontinuous Galerkin scheme of arbitrary degree in the case of constant linear advection equation with periodic boundary conditions.

متن کامل

An Arbitrary Lagrangian-Eulerian Local Discontinuous Galerkin Method for Hamilton-Jacobi Equations

Abstract: In this paper, an arbitrary Lagrangian-Eulerian local discontinuous Galerkin (ALE-LDG) method for Hamilton-Jacobi equations will be developed, analyzed and numerically tested. This method is based on the time-dependent approximation space defined on the moving mesh. A priori error estimates will be stated with respect to the $\mathrm{L}^{\infty}\left(0,T;\mathrm{L}^{2}\left(\Omega\rig...

متن کامل

A Nodal Discontinuous Galerkin Method for Non-linear Soil Dynamics

We investigate the potential capabilities of the discontinuous Galerkin method (DG-FEM) for non-linear site response analysis. The method combines the geometrical flexibility of the finite element method, and the high parallelization potentiality and the capabilities for accurate simulations of strongly non-linear wave phenomena of the finite volume technique. It has been successfully applied t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2019

ISSN: 0898-1221

DOI: 10.1016/j.camwa.2018.03.040